

University of Nottingham

Optical fibre sensing at the interface between tissue and orthosis or prosthesis

29st May 2019

Prof Steve Morgan, Royal Society Industry Fellow, Steve.morgan@nottingham.ac.uk

L. Liu, M. Al-Badri, R. Correia, S. Korposh, N Afroze, BR Hayes-Gill

- Brief overview of optical fibre sensors
- Monitoring carbon dioxide as a biomarker of tissue breakdown
- Monitoring pressure and shear

Both a work in progress...

Why optical fibre sensors?

- Lightweight, thin (125µm), flexible
- Can be easily incorporated into a medical device e.g. catheter, wound dressing
- Versatile with appropriate functionalisation, can be used to measure a range of physical and biochemical parameters

Correia et al 2018 J. Opt. 20 073003

Intensity based sensing (humidity)

Sensitive layer at tip that changes colour or refractive index

Correia et al 2018 J. Opt. 20 073003

Intensity based sensing (humidity)

Humidity sensing, skin measurements, wound microenvironment

Gomez et al, Sensors and Actuators B, 254:887-895 (2018).

- Brief overview of optical fibre sensors
- Monitoring carbon dioxide as a biomarker of tissue breakdown
- Monitoring pressure and shear

Both a work in progress...

Mirtaheri, Worsley, Gjovaag, Bader. A Review of the Role of the Partial Pressure of Carbon Dioxide in Mechanically Loaded Tissues: The Canary in the Cage Singing in Tune with the Pressure Ulcer Mantra. Annals of Biomedical Engineering (2014)

⁶ Future challenges involve the development of technological solutions to measure the PCO₂ in affected tissue continuously and non-invasively without interfering the metabolism or perfusion of the tissue. Therefore, further research is needed to find "clinically friendly" methods to measure carbon dioxide in tissue.

Sensor set-up

Liu et al, Sensing and Bio-Sensing Research, 22, 100254 (2019).

Intensity based sensing (carbon dioxide)

Liu et al, Sensing and Bio-Sensing Research, 22, 100254 (2019).

Intensity based sensing (carbon dioxide)

Pressure loading (~15 kPa), no change is observed Keep working on....

Preliminary test, the corresponding CO₂ concentration is not converted.

- Brief overview of optical fibre sensors
- Monitoring carbon dioxide as a biomarker of tissue breakdown
- Monitoring pressure and shear

Both a work in progress...

Grating based sensing (physical measurement)

$$\lambda_{\rm Bragg} = 2\eta_{\rm eff}\Lambda$$

When period of grating changes wavelength shifts Pressure, temperature and strain measurements

Grating based pressure measurement

But not sensitive to shear

A polarization maintaining (HiBi) fibre allows 2 polarization states to propagate in 1 fibre

These give different reflected wavelengths from a grating (2 peaks)

Provides a response where pressure and shear can be decoupled.

Wavelength (nm)

Amplitude of signals in 2 polarization states as filter is scanned Peaks correspond to different wavelengths in 2 different channels

- Brief overview of optical fibre sensors
- Monitoring carbon dioxide as a biomarker of tissue breakdown
 - Optimise gas capture
- Monitoring pressure and shear
 - Apply controlled pressure and shear
 - Develop platform for under foot measurement

Thankyou

ROYAL

SOCIETY

NHS National Institute for **Health Research**

Fibre-Optic CO₂ sensor (FOS): sensing mechanism

pH sensitive dye: thymol blue

University of

 CO_2 gas phase does not have the proton. Dissolved CO_2 produce the H⁺ $CO_2 + H_2O \rightleftharpoons H^+ + HCO_3^-$

A phase transfer quanternary ammonia hydroxide (QOH) is used to dissolve CO_2 And maintain the pH of sensitive layer

 $QOH + HT (red) \rightleftharpoons \{Q^+T^- \cdot xH_2o\}$ (blue)

 $\{Q^+T^- \cdot xH_2o\}$ (blue) + $CO_2 \rightleftharpoons Q^+HCO_3^- \cdot (x-1)H_2o + HT$ (yellow)

FOS fabrication

Coating solution preparation (solgel transition)

Optical fibre dip coating process

Drying & Annealing

Hand in bag